Pen and Paper Arguments for SIMON and SIMON-like Designs

Christof Beierle

Horst Görtz Institute for IT Security Ruhr-Universität Bochum, Germany

SCN 2016

Block Ciphers

Definition

A block cipher is a function $E : \mathbb{F}_2^n \times \mathbb{F}_2^s \to \mathbb{F}_2^n$, such that $E(\cdot, k)$ is a permutation for every key $k \in \mathbb{F}_2^s$.

Block Ciphers

Definition

A block cipher is a function $E : \mathbb{F}_2^n \times \mathbb{F}_2^s \to \mathbb{F}_2^n$, such that $E(\cdot, k)$ is a permutation for every key $k \in \mathbb{F}_2^s$.

Typically, we use round-iterated constructions.

New Block Cipher Designs

- In the last years, many new primitives were proposed (e.g. CAESAR competition, lightweight designs)
- Lots of them use well-known constructions (e.g. AES-like ciphers)
- Some of them are more innovative (e.g. SIMON and SPECK)

New Block Cipher Designs

- In the last years, many new primitives were proposed (e.g. CAESAR competition, lightweight designs)
- Lots of them use well-known constructions (e.g. AES-like ciphers)
- Some of them are more innovative (e.g. SIMON and SPECK)

Common Sense: Explain your design!

New block ciphers should be designed in a way that allow for arguments on their security. Designers are expected to provide security arguments againt the most common attacks!

- family of lightweight block ciphers designed for several block sizes and key length (10 versions in total)
- published by NSA in June 2013 on the IACR eprint archive¹
- very simple and innovative construction

¹R. Beaulieu et al. *The SIMON and SPECK Families of Lightweight Block Ciphers*. Cryptology ePrint Archive, Report 2013/404. http://eprint.iacr.org/2013/404. 2013.

Description of SIMON

- Feistel design
- A variety of block length supported (32, 48, 64, 96, 128 bit)
- The key length differs between 64 and 256 bit
- Simple round function
- 32 up to 72 rounds

New Block Cipher Designs

Common Sense: Explain your design!

New block ciphers should be designed in a way that allow for arguments on their security. Designers are expected to provide security arguments againt the most common attacks!

- Unfortunately, the designers of SIMON presented no design rationale of their ciphers.
- Lots of third-party analysis of SIMON was published. Most of the analysis is experimental.

In this work, we focus on differential cryptanalysis.

- Considering differential attacks, we provide a non-experimental (pen and paper) security argument over multiple rounds of SIMON
- Thus, we contribute towards a better understanding of possible block cipher constructions.

Differential Cryptanalysis

Idea

For a function $E_k : \mathbb{F}_2^n \to \mathbb{F}_2^n$, we would like to consider a differential $\alpha \xrightarrow{E_k} \beta$.

The probability of a differential $\alpha \xrightarrow{E_k} \beta$ can be computed as

$$P(\alpha \xrightarrow{E_k} \beta) = \frac{\{x \in \mathbb{F}_2^n \mid \beta = E_k(x) \oplus E_k(x \oplus \alpha)\}}{2^n}$$

If E_k is a (round reduced) instance of a block cipher, the knowledge of a differential with high probability can be used as a distinguisher.

Considering Differential Trails

Usually, it is hard to compute the probability of multi-round differentials.

We consider differential trails

Let \mathcal{R}_i denote the *i*-th round of a round-iterated cipher E_k . A *T*-round differential trail is a (T + 1)-tuple of differential states.

Considering Differential Trails

Usually, it is hard to compute the probability of multi-round differentials.

We consider differential trails

Let \mathcal{R}_i denote the *i*-th round of a round-iterated cipher E_k . A T-round differential trail is a (T + 1)-tuple of differential states.

For round-iterated ciphers, we assume that the probability of a trail is the product of its single-round differentials. Thus,

$$P(\alpha_0 \stackrel{\mathcal{R}_1}{\to} \alpha_1 \stackrel{\mathcal{R}_2}{\to} \dots \stackrel{\mathcal{R}_T}{\to} \alpha_T) = \prod_{i=1}^T P(\alpha_{i-1} \stackrel{\mathcal{R}_i}{\to} \alpha_i).$$

Considering Differential Trails (cont.)

Common Security Argument

- Prove an upper bound on the max. probability of any differential trail over a certain number of rounds t. (typically ≤ 2^{-blocksize})
- Specify the number of rounds of the primitive as $t + \kappa$ for a reasonable security margin κ .

Considering Differential Trails (cont.)

Common Security Argument

- Prove an upper bound on the max. probability of any differential trail over a certain number of rounds t. (typically ≤ 2^{-blocksize})
- Specify the number of rounds of the primitive as $t + \kappa$ for a reasonable security margin κ .

Two common mehtods to prove such an upper bound

- Experimental search (e.g. MILP, SAT/SMT solver): Works quite well for word-based ciphers (SPNs) and bit-based ciphers (like SIMON)
- Pen and paper proof: Works well for AES-like ciphers (Wide-trail strategy^a)

^aJ. Daemen. "Cipher and hash function design strategies based on linear and differential cryptanalysis". PhD thesis. Doctoral Dissertation, March 1995, KU Leuven, 1995.

Considering Differential Trails (cont.)

Common Security Argument

- Prove an upper bound on the max. probability of any differential trail over a certain number of rounds t. (typically ≤ 2^{-blocksize})
- Specify the number of rounds of the primitive as $t + \kappa$ for a reasonable security margin κ .

Two common mehtods to prove such an upper bound

- Experimental search (e.g. MILP, SAT/SMT solver): Works quite well for word-based ciphers (SPNs) and bit-based ciphers (like SIMON)
- Pen and paper proof: Works well for AES-like ciphers (Wide-trail strategy^a)

^aJ. Daemen. "Cipher and hash function design strategies based on linear and differential cryptanalysis". PhD thesis. Doctoral Dissertation, March 1995, KU Leuven, 1995.

Can we find more pen and paper arguments?

Results

- Considering differential attacks, we provide a non-experimental security argument over multiple rounds of SIMON.
- In particular, we bound the probability of *t*-round differential trails below 2^{-2t+2}.

Results

- Considering differential attacks, we provide a non-experimental security argument over multiple rounds of SIMON.
- In particular, we bound the probability of *t*-round differential trails below 2^{-2t+2}.
- Although our bounds are (much) worse than the best experimental bounds known, our argument shows that no attack based on a single differential trail is possible for all instances of SIMON.

Results (cont.)

Comparison of the experimental bounds 2 for ${\rm SIMON32}$ and ${\rm SIMON48}$ and our provable bounds.

²S. Kölbl et al. Observations on the SIMON Block Cipher Family. CRYPTO 2015.

SCN 2016

12 / 30

Christof Beierle (Ruhr-Universität Bochum) Pen and Paper Arguments for SIMON

Results (cont.)

Rounds needed for bounding the differential probability by $2^{-\text{blocksize}}$

	rounds	rounds needed	margin
Simon $32/64$	32	17	15
Simon $48/72$	36	25	11
Simon $48/96$	36	25	11
Simon $64/96$	42	33	9
Simon $64/128$	44	33	11
Simon $96/96$	52	49	3
Simon $96/144$	54	49	5
SIMON128/128	68	65	3
Simon128/192	69	65	4
SIMON128/256	72	65	7

Table of Contents

2 Bounding the differential probability of SIMON

SIMON : linear and non-linear layer

• We seperate the Feistel function of SIMON into a non-linear part ρ and a linear part θ .

Our main result

Let $f_{S}(x) := (x \ggg 8) \land (x \ggg 1) \oplus (x \ggg 2)$ be the Feistel *f*-function.

Differential probability of SIMON

The probability of any *t*-round differential trail is upper bounded by 2^{-2t+2} .

Our main result

Let $f_S(x) := (x \ggg 8) \land (x \ggg 1) \oplus (x \ggg 2)$ be the Feistel *f*-function.

Differential probability of SIMON

The probability of any *t*-round differential trail is upper bounded by 2^{-2t+2} .

The main idea of the proof:

- Show that the differential probability is low for input differences with large Hamming Weight (≥ 4)
- Prove all other cases seperately

Let $f_{\mathcal{S}}(x) := (x \ggg 8) \land (x \ggg 1) \oplus (x \ggg 2)$

The single-round behavior is understood quite well.

Single-round propagation (Kölbl, Leander, Tiessen, 2015) For a given (non-zero) input difference $\alpha \in \mathbb{F}_2^n$ into f_S , the set of possible output differences defines an affine subspace U_α s.t. $p_\alpha := P(\alpha \xrightarrow{f_S} \beta) \neq 0$ for all $\beta \in U_\alpha$. In particular, $p_\alpha = 2^{-d_\alpha}$ with $d_\alpha = \dim U_\alpha$.

Why? Because deg $f_S = 2$ and thus $f_S(x) \oplus f_S(x \oplus \alpha)$ is linear

 \Longrightarrow

Observation: dim U_{α} (and thus the differential probability) corresponds to the Hamming weight of the input difference.

Observation: dim U_{α} (and thus the differential probability) corresponds to the Hamming weight of the input difference.

Improving this bound

Let α be an input difference into f_S . For the differential probability over f_S it holds that

(1) if wt(
$$\alpha$$
) = 0, then $p_{\alpha} = 1$ and $U_{\alpha} = \{0\}$
(2) if wt(α) = 1, then $p_{\alpha} \le 2^{-2}$
(3) if wt(α) $\in \{2, 3\}$, then $p_{\alpha} \le 2^{-3}$
(4) if wt(α) ≥ 4 , then $p_{\alpha} \le 2^{-4}$

Proof.

Construct enough linearly independent elements U_{lpha} .

Observation: dim U_{α} (and thus the differential probability) corresponds to the Hamming weight of the input difference.

Improving this bound

Let α be an input difference into $f_S.$ For the differential probability over f_S it holds that

(1) if wt(
$$\alpha$$
) = 0, then $p_{\alpha} = 1$ and $U_{\alpha} = \{0\}$
(2) if wt(α) = 1, then $p_{\alpha} \le 2^{-2}$
(3) if wt(α) $\in \{2, 3\}$, then $p_{\alpha} \le 2^{-3}$ Improved bound
(4) if wt(α) ≥ 4 , then $p_{\alpha} \le 2^{-4}$

Proof.

Construct enough linearly independent elements U_{α} .

A Trivial Upper Bound on the Trail Probability

Worst case: The input difference into f_S of every second round is 0.

$$(\mathbf{0}, \alpha) \rightarrow (\alpha, \mathbf{0}) \rightarrow (\mathbf{0}, \alpha) \rightarrow \dots$$

If $p_{\alpha} = 2^{-2}$, we would obtain the *trivial bound*.

For analyzing multiple rounds through the Feistel construction, we consider only trails of the form $(0, \alpha) \rightarrow \cdots \rightarrow (0, \beta)$

Observation

Let for all differences $\alpha, \beta \in \mathbb{F}_2^n \setminus \{0\}$ and all t > 1 the differential probability of any *t*-round $(0, \alpha) \to \cdots \to (0, \beta)$ trail be bounded by 2^{-2t} . Then,

$$P((\gamma_0, \delta_0) \xrightarrow{1} \dots \xrightarrow{T} (\gamma_T, \delta_T)) \leq 2^{-2T+2}$$

for all γ_i, δ_i with $(\gamma_0, \delta_0) \neq (0, 0)$ and all T > 0.

It is left to show that the probability of all *t*-round trails of the form

$$(0, \alpha) \rightarrow (\alpha, 0) \rightarrow (\gamma_2, \delta_2) \rightarrow \cdots \rightarrow (\gamma_{t-1}, \delta_{t-1}) \rightarrow (0, \beta)$$

is upper bounded by 2^{-2t}. W.I.o.g. we assume that all intermediate $\gamma_i \neq 0$.

It is left to show that the probability of all *t*-round trails of the form

$$(0,\alpha) \rightarrow (\alpha,0) \rightarrow (\gamma_2,\delta_2) \rightarrow \cdots \rightarrow (\gamma_{t-1},\delta_{t-1}) \rightarrow (0,\beta)$$

is upper bounded by 2^{-2t} . W.l.o.g. we assume that all intermediate $\gamma_i \neq 0$.

Note that $p_0 = 1$, $p_{\alpha} \le 2^{-2}$ and $\forall \gamma_i : p_{\gamma_i} \le 2^{-2}$. Thus, one only has to make sure to *gain* a factor of 2^{-2} which is lost in the propagation of the 0-difference.

It is left to show that the probability of all *t*-round trails of the form

$$(0, \alpha) \rightarrow (\alpha, 0) \rightarrow (\gamma_2, \delta_2) \rightarrow \cdots \rightarrow (\gamma_{t-1}, \delta_{t-1}) \rightarrow (0, \beta)$$

is upper bounded by 2^{-2t} . W.l.o.g. we assume that all intermediate $\gamma_i \neq 0$.

Note that $p_0 = 1$, $p_{\alpha} \le 2^{-2}$ and $\forall \gamma_i : p_{\gamma_i} \le 2^{-2}$. Thus, one only has to make sure to *gain* a factor of 2^{-2} which is lost in the propagation of the 0-difference.

We consider serveral cases for the Hamming Weight of α .

• wt(
$$\alpha$$
) \geq 4:

• wt(α) = 1: Let w.l.o.g α = (1, 0, ..., 0).

• wt $(\alpha) = 1$: Let w.l.o.g $\alpha = (1, 0, \dots, 0)$. Now,

 $\gamma_2 = f_S(\alpha) \oplus 0 = (0, *_1, 1, 0, 0, 0, 0, 0, *_2, 0, 0, 0, 0, 0, 0, 0)$

• wt(
$$\alpha$$
) = 1: Let w.l.o.g α = (1,0,...,0). Now,
 $\gamma_2 = f_5(\alpha) \oplus 0 = (0,*_1,1,0, 0,0,0,0, *_2,0,0,0, 0,0,0,0)$
Case 1 (*₂ = 0):

• wt(
$$\alpha$$
) = 1: Let w.l.o.g α = (1, 0, ..., 0). Now,
 $\gamma_2 = f_S(\alpha) \oplus 0 = (0, *_1, 1, 0, 0, 0, 0, 0, *_2, 0, 0, 0, 0, 0, 0, 0)$
Case 1 (*₂ = 0): Then,

$$\begin{array}{ll} \gamma_3 = f_S(\gamma_2) \oplus \alpha &= (1, 0, *, *, 1, 0, 0, 0, 0, *, *, 0, 0, 0, 0, 0) \\ \gamma_4 = f_S(\gamma_3) \oplus \gamma_2 &= (0, *, *, *, *, *, 1, 0, *, 0, *, *, *, 0, 0, 0) \end{array}$$

• wt(
$$\alpha$$
) = 1: Let w.l.o.g α = (1,0,...,0). Now,
 $\gamma_2 = f_5(\alpha) \oplus 0 = (0,*_1,1,0, 0,0,0,0, *_2,0,0,0, 0,0,0,0)$
Case 1 (*2 = 0): Then,

$$\begin{array}{ll} \gamma_3 = f_5(\gamma_2) \oplus \alpha &= (1, 0, *, *, 1, 0, 0, 0, 0, *, *, 0, 0, 0, 0, 0, 0) \\ \gamma_4 = f_5(\gamma_3) \oplus \gamma_2 &= (0, *, *, *, *, *, 1, 0, *, 0, *, *, *, 0, 0, 0) \end{array}$$

If now the weight of γ_4 is higher than 1, then $p_{\gamma_3}, p_{\gamma_4} \leq 2^{-3}$. Thus, let wt $(\gamma_4) = 1$.

• wt(
$$\alpha$$
) = 1: Let w.l.o.g α = (1, 0, ..., 0). Now,
 $\gamma_2 = f_S(\alpha) \oplus 0 = (0, *_1, 1, 0, 0, 0, 0, 0, *_2, 0, 0, 0, 0, 0, 0, 0)$
Case 1 (*₂ = 0): Then,

$$\begin{array}{ll} \gamma_3 = f_{\mathcal{S}}(\gamma_2) \oplus \alpha & = (1, 0, *, *, 1, 0, 0, 0, 0, *, *, 0, 0, 0, 0, 0) \\ \gamma_4 = f_{\mathcal{S}}(\gamma_3) \oplus \gamma_2 & = (0, *, *, *, *, *, *, 1, 0, *, 0, *, *, *, 0, 0, 0) \end{array}$$

If now the weight of γ_4 is higher than 1, then $p_{\gamma_3}, p_{\gamma_4} \leq 2^{-3}$. Thus, let wt(γ_4) = 1. It follows that

$$\gamma_5 = f_S(\gamma_4) \oplus \gamma_3 = (1, 0, *, *, 1, 0, 0, *, 1, *, *, 0, 0, 0, *, 0)$$

and thus $p_{\gamma_5} \leq 2^{-3}$.

Case 2 ($*_2 = 1$):

Case 2 (*2 = 1): Then $p_{\gamma_2} \leq 2^{-3}$ already holds and

 $\gamma_3 = f_S(\gamma_2) \oplus \alpha = (*, 0, *, *, 1, 0, 0, 0, 0, *, *, 0, 0, 0, 0, 0)$

Case 2 (*2 = 1): Then $p_{\gamma_2} \leq 2^{-3}$ already holds and

 $\gamma_3 = f_S(\gamma_2) \oplus \alpha = (*, 0, *, *, 1, 0, 0, 0, 0, *, *, 0, 0, 0, 0, 0)$

Again, let w.l.o.g wt(γ_3) = 1. It follows that

$$\gamma_4=f_5(\gamma_3)\oplus\gamma_2 = (0,*,1,0,\ 0,*,1,0,\ 1,0,0,0,\ *,0,0,0)$$
 and thus $p_{\gamma_4}\leq 2^{-3}.$

Case 2 (* $_2 = 1$): Then $p_{\gamma_2} \leq 2^{-3}$ already holds and

 $\gamma_3 = f_S(\gamma_2) \oplus \alpha = (*, 0, *, *, 1, 0, 0, 0, 0, *, *, 0, 0, 0, 0, 0)$

Again, let w.l.o.g wt(γ_3) = 1. It follows that

$$\gamma_4=f_5(\gamma_3)\oplus\gamma_2 = (0,*,1,0,\ 0,*,1,0,\ 1,0,0,0,\ *,0,0,0)$$
 and thus $p_{\gamma_4}\leq 2^{-3}.$

All in all, we "gained" a factor of $2^{-1} \cdot 2^{-1} = 2^{-2}$.

For the cases

- wt(α) = 2
- $wt(\alpha) = 3$

this can be proven in a similar way!

Table of Contents

1 Introduction

2 Bounding the differential probability of SIMON

Conclusion

- We took a further step into understanding possible block cipher constructions.
- For SIMON, we were able to obtain a non-trivial upper bound on the max. probability of a differential trail using a non-experimental argument.
- \bullet One can do the analysis for other rotation constants as well. Same bound is also valid for ${\rm SIMECK.}^3$

³G. Yang et al. The Simeck Family of Lightweight Block Ciphers. CHES 2015.

Conclusion

- We took a further step into understanding possible block cipher constructions.
- For SIMON, we were able to obtain a non-trivial upper bound on the max. probability of a differential trail using a non-experimental argument.
- \bullet One can do the analysis for other rotation constants as well. Same bound is also valid for ${\rm SIMECK.}^3$
- We did not consider multi-round differentials. However, there has been shown a differential effect in SIMON. Experimental bounds are better in this case.

³G. Yang et al. The Simeck Family of Lightweight Block Ciphers. CHES 2015.

Conclusion

- We took a further step into understanding possible block cipher constructions.
- For SIMON, we were able to obtain a non-trivial upper bound on the max. probability of a differential trail using a non-experimental argument.
- \bullet One can do the analysis for other rotation constants as well. Same bound is also valid for ${\rm SIMECK.}^3$
- We did not consider multi-round differentials. However, there has been shown a differential effect in SIMON. Experimental bounds are better in this case.

Note

We did not show improved security of ${\rm SIMON}.$ Instead, we tried to learn more about possible block cipher constructions!

SCN 2016

29 / 30

³G. Yang et al. The Simeck Family of Lightweight Block Ciphers. CHES 2015.

Thanks for your attention! Any Questions?