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Public Key Encryption

pk (pk,sk)

c ← Enc(pk,m; r)

r is the randomness

m = Dec(sk, c)
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Key-Dependent Message Attacks

An adversary might be able to see ciphertexts encrypting messages
related to the secret key

Applications
careless key management
fully homomorphic encryption bootstrapping transformation
anonymous credential system a KDM secure encryption is used

to discourage delegation of credentials
disk encryption utilities the disk encryption key may end up

being stored in the page files and thus is encrypted
along with the disc content

Naor-Yung Paradigm with Shared Randomness and Applications September 20, 2016 3 of 16



Introduction Our Contributions Main Theorem KDM-CPA PKE Thank You! Contents

Key-Dependent Message Attacks

An adversary might be able to see ciphertexts encrypting messages
related to the secret key

Applications
careless key management
fully homomorphic encryption bootstrapping transformation
anonymous credential system a KDM secure encryption is used

to discourage delegation of credentials
disk encryption utilities the disk encryption key may end up

being stored in the page files and thus is encrypted
along with the disc content

Naor-Yung Paradigm with Shared Randomness and Applications September 20, 2016 3 of 16



Introduction Our Contributions Main Theorem KDM-CPA PKE Thank You! Contents

F -KDM CPA and CCA security

b, pk

sk

(pk, sk)

b R← {0, 1}

pk

KDM
Oracle

Decryption
Oracle
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Naor-Yung Theorem (Camenisch, Chandran, Shoup)

c = Enc(pk,m; r) c ′ = Enc(pk ′,m; r ′)

p̄k = (pk, pk ′), s̄k = sk

π Both c and c ′ encrypt m

c̄ = (c, c ′, π)

Theorem (NY, Independent Randomness)
F-KDM-CPA + simulation sound NIZK ⇒ F-KDM-CCA

To decrypt we need only one secret key!
Originally it was designed to prove only CCA security from CPA
The two encryptions use independent randomnesses r , r ′
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Our Contributions

1 Twist of Naor-Young leading to more efficient concrete
instantiations

2 First PKE scheme whose KDM-CPA security
based on instances of the Subset Sum problem
(robustness to quantum attacks)

3 Concrete instantiations from Decisional Diffie-Hellman,
Quadratic Residuosity, Subset Sum
with 50% gain in communication complexity

Naor-Yung Paradigm with Shared Randomness and Applications September 20, 2016 6 of 16
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Twist of Naor-Yung

c = Enc(pk,m; r∗) c ′ = Enc(pk ′,m; r∗)

p̄k = (pk, pk ′), s̄k = sk

π Both c and c ′ encrypt m

c̄ = (c, c ′, π)

Natural idea: have c and c ′ share the same randomness r∗

Leads to a more efficient design of the NIZK

Naor-Yung Paradigm with Shared Randomness and Applications September 20, 2016 7 of 16
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When and under which conditions does it work?
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Randomness Fusion

c = Enc(pk,m; r) c ′ = Enc(pk ′,m′; r ′)

Rand(·) aux := (pk, pk ′, sk ′, r ′,m′)

(ĉ, ĉ ′)

(c∗ = Enc(pk,m; r∗), c ′∗ = Enc(pk ′,m; r∗))

≈S
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Main Theorem

Theorem (NY, shared randomness)
Randomness Fusion + F-KDM-CPA + Simulation Sound NIZK

⇒ F-KDM-CCA

Extensions:
Effective also for CCA security
It also works in the setting of key-leakage
(security of PKE against side-channel attacks)

Naor-Yung Paradigm with Shared Randomness and Applications September 20, 2016 9 of 16
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ElGamal and Randomness Fusion

(G, q, g) cyclic group of prime order q with generator g

pk = h = gx ∈ G , sk = x
(c1, c2) := Enc(pk,m; r) = (g r , hr ·m)

first encryption: h = gx ,
c = (c1, c2) = (g r , hrm)
second encryption:
h′ = gx ′ ,
x ′ = sk ′,
c ′ = (c ′1, c ′2) = (g r ′

, h′r ′m′),

Randomness Fusion

1 c∗1 = c∗′1 = c1c ′1
2 c∗2 = (hrm)hr ′

3 c∗′2 = c ′2(g r )x ′

Naor-Yung Paradigm with Shared Randomness and Applications September 20, 2016 10 of 16

Easy to show that c∗1 and c∗2
are statistically close to fresh encryptions
with randomness r∗ = r + r ′
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ElGamal NIZK
statement x := (h, (c1, c2), h′, (c ′1, c ′2)) witness ω := (r , r ′)

α := (α1, α2, α3) = (g s , g s′
, hs · (h′)s′)

β ← Zq

γ := (γ1, γ2) = (s − βr , s ′ + βr ′)

Naor-Yung Paradigm with Shared Randomness and Applications September 20, 2016 11 of 16

Improvement
6 group elements instead of 9 group elements

(33% gain)

In the paper: Concrete instantiations for KDM security
based on DDH, QR, Subset Sum with 50% gain
in ciphertext size
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Subset Sum

s ∈ {0, 1}n, a ∈ Zn
q

a � s ≡ t mod q
Original Subset Sum

(a, t, s)← SS(n, q)
(a, t) ≈S (a, u),
where u is random in Zq

log(q)

O(1/ log(n))

δ = n/ log(q)

Naor-Yung Paradigm with Shared Randomness and Applications September 20, 2016 12 of 16

Example
p = 10 , m = n = 3
a = (738, 916, 375) s = (0, 1, 1)

a · s mod 103 = 916 + 375 mod 103 = 291
written in base p:7 9 3

3 1 7
8 6 5


01
1

 +

01
0

 =

29
1



Crypto from Subset Sum
PRG and UOWHFs [IN96]
CPA and CCA secure PKE
[LPS10,FMV16]
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Subset Sum

s ∈ {0, 1}n, a ∈ Zn
q

q := pm

A � s ≡ t mod p

SS as LWE (Lyubashevsky, Palacio, Segev)
(A, t, s)← SS(n, q)
A ∈ Zm×n

p
t := A · s + e(A, s) (deterministic noise)

m log(p)

m ≈ n2

O(1/ log(n))

δ = n/(m log(p))
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Our Subset Sum Based Scheme

C1

R � A

R←$ [−b√p/2c, b√p/2c]`×m

c2

R � t + m �bp2c

Apk := t, ssk :=

Decryption of (C1, c2)

c2 − C1 � s ≡ bme2 mod p

Naor-Yung Paradigm with Shared Randomness and Applications September 20, 2016 13 of 16
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F -KDM CPA Security of the Scheme

Faff := {f : f (s) := F · s + f },F ∈ Z`×n
2 , f ∈ Z`

2

C1

R � A

c2

R � t + F �bp2c� s + f �bp2c

G0 → G1 Indistinguishability due to Leftover-Hash Lemma
G1 → G2 Indistinguishability due to Subset Sum Assumption
G2 → G3 Indistinguishability due to Leftover-Hash Lemma

and Subset Sum Assumption

Naor-Yung Paradigm with Shared Randomness and Applications September 20, 2016 14 of 16

KDM Security Amplification
From affine functions to all functions computable
in some fixed polynomial time [Applebaum11]
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