
Verifiable Pattern
Matching on Outsourced

Texts
D. Catalano M. Di Raimondo S. Faro

Università di Catania

1

Pattern Matching on
Outsourced Documents

Setting
• Server provides seemingly unbounded storage
• Client has limited storage capabilities (she “forgets” about her data)

2

Pattern Matching on
Outsourced Documents

Can you send
me document A?

3

Pattern Matching on
Outsourced Documents

Answers should be
• (Provably) Correct
• Proof of Correctness should be short and easy to check
• Overall workload for the client should be low

Is there any occurrence of the
word Amalfi in document A?

Yes!

4

Potential Solutions
• AD-SNARKs [BBFR15]

• Compact ✔

• Fast Verification ✔

• Simple and efficient to implement ✖

• complex machinery, evaluation/verification keys grow (significantly) with the size of the circuit

• (Leveled) Fully Homomorphic Signatures [GVW15] + (any) Pattern Matching
algorithm

• Compact ✔

• Fast Verification ✔

• Simple and Efficient to implement ✖
5

Potential Solutions - II
• Suffix Trees + Cryptographic Accumulators [PPTT15]

• Compact ✔

• Fast Verification ✔

• Simple and Efficient to implement ✔

6

However
• Significant preprocessing (Client side) is required for each document outsourced
• Modifications require redoing preprocessing

Our Solution
Simple and efficient solution based on homomorphic MACs [CF13]

The good 😀

• Compact ✔

• Fast Verification ✔

• Simple and Efficient to implement ✔

The bad ☹

• Practical performances (at server side) only for small texts

7

Our solution - II
• We develop new pattern matching algorithms that cope

well with the fast HoMAC from [CF13]

• Our methods allow to represent several text processing
operations via low degree polynomials

• exact/approximate matches,

• number of (exact/approximate) occurrences,

• positions of occurrences.

• Very easy to implement.

8

Interlude: Homomorphic MAC

• Ver(sk, P, m, σ): Verification w.r.t. P(m1,…,mn)

• Ver(sk, P, m, σ) does not know m1,…,mn.

• The actual definition is more complicate

m1,	MACSK(m1)…mn,	MACSK(mn)		

P(m1,…mn),													MACSK(P(m1,…,mn))	

Evalpk() no	secret	key

9

pk
[AB09, GW13, CF13]

New	message

Key Properties
• Composability:

• Outputs of past computations can be used as
input for new ones

• Succinctness: |MACSK(P(m1,…,mn))| << |D|
• Otherwise trivial solution: send the full

(authenticated) D

10

The Homomorphic MAC [CF13]
MAC(sk, (τ, m)) sk=(k,x)

r fk(τ)
y0 m
y1 (r-m)/x mod p
Return σ= (y0, y1)

11

Ver(sk, τ, (y0, y1),m)
If (y0≠m) return 0
r fk(τ)
If (r==xy1+y0) return 1
else return 0

(y0, y1) define a linear polynomial t(z)=y0 + y1z
Addition: addition of polynomials
Multiplication: compute product polynomial (via
convolution)
Very efficient!

String Matching via (low degree)
Polynomials

• x pattern, |x|=m

• y (binary) text, |y|=n

Number of occurrences of x in y :

12

• x,w (binary) patterns, |x|=|w|=m

↵(x, y) =
n�mX

j=0

m�1Y

i=0

�
2xiy(j,i) + 1� xi � y(j,i)

�
!

x = w ,
m�1Y

i=0

(2xiwi + 1� xi � wi) = 1

Proposed protocol
• Client sends out a pattern x (together with its MAC)

• Server homomorphically computes 𝛂(x,y)

13

Problem:
•this requires (n-m) computations of 2m-degree polynomials
•very inefficient for large texts

Dynamic Polynomials
• A more careful encoding of the computation can drastically

improve performances

• For a given pattern x the computation can be dynamically
“adapted”to x

14

Example

can be rewritten as

↵(x, y) =
n�mX

j=0

m�1Y

i=0

�
2xiy(j,i) + 1� xi � y(j,i)

�
!

↵(x, y) =
n�mX

j=0

m�1Y

i=0

�
xiy(j,i) + (1� xi)(1� y(j,i))

�
!

Dynamic Polynomials - II

• Knowing the pattern, this can be computed, more
efficiently, as

15

↵(x, y) =
n�mX

j=0

m�1Y

i=0

�
xiy(j,i) + (1� xi)(1� y(j,i))

�
!

P=1
for i=1 to m-1
if (xi=0) P=P ₒ (1-y(j,i))
else P=P ₒ y(j,i)

This alone reduces the
computational costs of
the server by a (rough)
70%

Experiments
• 4 char pattern

• 10 KiB text

• 100 KiB text

16

Proof Size Evaluation Verification
528 bytes 4 s 300 ms

Proof Size Evaluation Verification
528 bytes 38 s 3 s

Experiments - II
• 8 char pattern

• 10 KiB text

• 100 KiB text

17

Proof Size Evaluation Verification
1040 bytes 15 s 1 s

Proof Size Evaluation Verification
1040 bytes 151 s 6 s

Conclusions and Open
Questions

• We considered the question of performing pattern
matching reliably on outsourced documents.

• Our solutions are reasonably efficient but not yet
practical.

• Can we come up with better (i.e. more efficient)
homomorphic authenticators?

18

Thank you!

19

