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Modeling Adaptive Security

Modular Composition 
[Canetti’00]

Universal Composition
[Canetti’01]

Sequential composition Concurrent composition

Synchronous protocols Asynchronous protocols

(Mostly) non-interactive 
environment

Interactive environment

Inputs are given statically 
before the computation

Inputs are given dynamically 
during the computation



Feasibility Result [CLOS’02]

compiler

CRS CRS

1. Semi-honest protocol in the plain model
– Round complexity is O 𝑑

2. Semi-honest to malicious compiler in CRS model
– Round complexity blows up by constant factor

3. Malicious protocol in CRS model
– Round complexity is O 𝑑

𝑑= depth of the circuit

Semi-honest Malicious



Constant-Round Protocols
Constant-round adaptive MPC [CGP’15] [DKR’15] [GP’15]

– In the CRS model, also for the semi-honest case

– CRS contains obfuscated program that gets the circuit as input 
⇒ The size of the CRS grows with the size of the circuit

Constant-round in RAM model [CP’16]
– The size of the CRS grows with the size of the inputs

CRS



Protocols with Short CRS

Semi-honest setting

– No CRS (plain model)

Malicious setting 

– CRS independent of the circuit 
(depends only on security parameter)

Can use [CLOS’02] compiler



Outline

1. Non-Interactive NCE in UC framework

2. Protocols with round complexity independent of circuit

3. Constant-round protocols for class of functions
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Secure Message Transmission (SMT)

𝑚 𝑚

𝑚



Secure Message Transmission (SMT)

𝑚 𝑚

𝑚
Upon corruption 
reveal 𝑚



Statically Secure Protocol

• Use public-key encryption (PKE)

• Simulation:

– Both parties are honest, encrypt 0

– One party corrupted, 𝒮 learns 𝑚 and encrypts 𝑚

𝑝𝑘 ← 𝐺𝑒𝑛 1𝜅

𝑐 ← 𝐸𝑛𝑐 𝑝𝑘, 𝑚

PKE can be defined as a non-interactive 
(2-round) protocol statically realizes ℱ𝑆𝑀𝑇



Adaptive Corruptions
• Using PKE simulation fails when parties start honest

• [CFGN’96] defined Non-Committing Encryption (NCE) 
as 𝑛-party protocol that adaptively realizes ℱ𝑆𝑀𝑇

• [DN’00] defined strong NCE as 2-party protocol that 
adaptively realizes ℱ𝑆𝑀𝑇 (in [Canetti’00])

• Both definitions and constructions are interactive 

• Can define non-interactive NCE as 2-round protocol

• [CLOS’02] provided a simpler definition



Non-Interactive NCE
Definition: A PKE scheme 𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐 with 
algorithm 𝑆𝑖𝑚 is non-interactive NCE if ∀𝑚 ∈ 0,1
the distributions are comp. indistinguishable

• Honest view of encryption of 𝑚

𝑝𝑘, 𝑐, 𝑟𝐺 , 𝑟𝐸 ∣ 𝑝𝑘 = 𝐺𝑒𝑛 1𝜅; 𝑟𝐺 , 𝑐 = 𝐸𝑛𝑐 𝑝𝑘, 𝑚; 𝑟𝐸

• Simulated encryption explained for 𝑚

 𝑝𝑘,  𝑐, 𝜌𝐺
𝑚, 𝜌𝐸

𝑚 ∣  𝑝𝑘,  𝑐, 𝜌𝐺
0 , 𝜌𝐸

0, 𝜌𝐺
1 , 𝜌𝐸

1 ← 𝑆𝑖𝑚 1𝜅



Non-Interactive NCE (2)

 𝑝𝑘

 𝑐

𝑝𝑘 ← 𝐺𝑒𝑛 𝑟𝐺

𝑐

 𝑝𝑘,  𝑐, 𝜌𝐺
0 , 𝜌𝐸

0 , 𝜌𝐺
1 , 𝜌𝐸

1 ← 𝑆𝑖𝑚 1𝜅

𝑝𝑘

𝑐 ← 𝐸𝑛𝑐 𝑚; 𝑟𝐸

𝑚𝑚

IDEAL REAL
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𝑝𝑘

𝑐 ← 𝐸𝑛𝑐 𝑚; 𝑟𝐸

𝑚𝑚

 𝑝𝑘,  𝑐, 𝜌𝐺
𝑚, 𝜌𝐸

𝑚 𝑝𝑘, 𝑐, 𝑟𝐺 , 𝑟𝐸

IDEAL REAL



• Simulation is valid if inputs are given before the 
computation begins (as in modular composition)

• In UC inputs are dynamically generated

• Need to simulate corruptions before inputs are given

Problem



• Simulation is valid if inputs are given before the 
computation begins (as in modular composition)

• In UC inputs are dynamically generated

• Need to simulate corruptions before inputs are given

Problem

𝑝𝑘 ← 𝐺𝑒𝑛 𝑟𝐺
𝑝𝑘



• Simulation is valid if inputs are given before the 
computation begins (as in modular composition)

• In UC inputs are dynamically generated

• Need to simulate corruptions before inputs are given

Problem

 𝑝𝑘 𝑝𝑘 ← 𝐺𝑒𝑛 𝑟𝐺

 𝑝𝑘,  𝑐, 𝜌𝐺
0 , 𝜌𝐸

0 , 𝜌𝐺
1 , 𝜌𝐸

1 ← 𝑆𝑖𝑚 1𝜅

𝑝𝑘



• Simulation is valid if inputs are given before the 
computation begins (as in modular composition)

• In UC inputs are dynamically generated

• Need to simulate corruptions before inputs are given

Problem

 𝑝𝑘 𝑝𝑘 ← 𝐺𝑒𝑛 𝑟𝐺

 𝑝𝑘,  𝑐, 𝜌𝐺
0 , 𝜌𝐸

0 , 𝜌𝐺
1 , 𝜌𝐸

1 ← 𝑆𝑖𝑚 1𝜅

𝑝𝑘

𝑝𝑘, 𝑟𝐺



• Simulation is valid if inputs are given before the 
computation begins (as in modular composition)

• In UC inputs are dynamically generated

• Need to simulate corruptions before inputs are given

Problem

 𝑝𝑘 𝑝𝑘 ← 𝐺𝑒𝑛 𝑟𝐺

 𝑝𝑘,  𝑐, 𝜌𝐺
0 , 𝜌𝐸

0 , 𝜌𝐺
1 , 𝜌𝐸

1 ← 𝑆𝑖𝑚 1𝜅

𝑝𝑘

 𝑝𝑘, 𝜌𝐺
0 𝑝𝑘, 𝑟𝐺



• Simulation is valid if inputs are given before the 
computation begins (as in modular composition)

• In UC inputs are dynamically generated

• Need to simulate corruptions before inputs are given

Problem

 𝑝𝑘 𝑝𝑘 ← 𝐺𝑒𝑛 𝑟𝐺

 𝑝𝑘,  𝑐, 𝜌𝐺
0 , 𝜌𝐸

0 , 𝜌𝐺
1 , 𝜌𝐸

1 ← 𝑆𝑖𝑚 1𝜅

𝑝𝑘

𝑚 = 1𝑚 = 1

 𝑝𝑘, 𝜌𝐺
0 𝑝𝑘, 𝑟𝐺



• Simulation is valid if inputs are given before the 
computation begins (as in modular composition)

• In UC inputs are dynamically generated

• Need to simulate corruptions before inputs are given

Problem

 𝑝𝑘 𝑝𝑘 ← 𝐺𝑒𝑛 𝑟𝐺

𝑐

 𝑝𝑘,  𝑐, 𝜌𝐺
0 , 𝜌𝐸

0 , 𝜌𝐺
1 , 𝜌𝐸

1 ← 𝑆𝑖𝑚 1𝜅

𝑝𝑘
𝑐 ← 𝐸𝑛𝑐 𝑚; 𝑟𝐸

𝑚 = 1𝑚 = 1

 𝑝𝑘, 𝜌𝐺
0 𝑝𝑘, 𝑟𝐺, 𝑐, 𝑟𝐸



Problem
• Once  𝑝𝑘, 𝜌𝐺

0 (or 𝜌𝐺
1 ) are fixed,  𝑐 is committing

•  𝑐 won’t decrypt to random 𝑚 with noticeable prob.

 𝑝𝑘 𝑝𝑘 ← 𝐺𝑒𝑛 𝑟𝐺

𝑐
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• Simulation of 𝑐 only after sender activated with 𝑚

• 𝒮 learns 𝑚 from ideal functionality (receiver corrupt)

• 𝒮 encrypts 𝑐 ← 𝐸𝑛𝑐  𝑝𝑘, 𝑚; 𝑟𝐸

Adjust the Simulation

 𝑝𝑘 𝑝𝑘 ← 𝐺𝑒𝑛 𝑟𝐺

𝑐

 𝑝𝑘,  𝑐, 𝜌𝐺
0 , 𝜌𝐸
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• We show how to combine committing and 
non-committing ciphertexts in simulation

Adjust the Simulation (2)

 𝑝𝑘

𝑐

𝑝𝑘 ← 𝐺𝑒𝑛 𝑟𝐺

𝑐

 𝑝𝑘,  𝑐, 𝜌𝐺
0 , 𝜌𝐸

0 , 𝜌𝐺
1 , 𝜌𝐸

1 ← 𝑆𝑖𝑚 1𝜅

𝑝𝑘
𝑐 ← 𝐸𝑛𝑐 𝑚; 𝑟𝐸

𝑚 = 1𝑚 = 1

𝑝𝑘, 𝑟𝐺 , 𝑐, 𝑟𝐸 𝑝𝑘, 𝜌𝐺
0, 𝑐, 𝑟𝐸

Thm: If non-interactive NCE exists, then ℱ𝑆𝑀𝑇

can be adaptively UC realized in 2 rounds



Application: Oblivious Transfer (OT)

𝑚0, 𝑚1 𝑐

𝑚𝑐

Augmented NCE:

– Oblivious sampling of public keys 𝑝𝑘 ← 𝑂𝐺𝑒𝑛 1𝜅

– Invertible sampling 

𝑝𝑘, 𝑟 ∣ 𝑝𝑘 = 𝑂𝐺𝑒𝑛 1𝜅; 𝑟 ∼ 𝑝𝑘, 𝑂𝐺𝑒𝑛−1 𝑝𝑘 ∣ 𝑝𝑘 ← 𝐺𝑒𝑛 1𝜅



Simulation (semi-honest)

• 𝒮 simulate using  𝑝𝑘0,  𝑐0, 𝜌0,𝐺
0 , 𝜌0,𝐸

0 , 𝜌0,𝐺
1 , 𝜌0,𝐸

1 ← 𝑆𝑖𝑚 1𝜅

 𝑝𝑘1,  𝑐1, 𝜌1,𝐺
0 , 𝜌1,𝐸

0 , 𝜌1,𝐺
1 , 𝜌1,𝐸

1 ← 𝑆𝑖𝑚 1𝜅

Adaptive OT [CLOS’02]
𝑝𝑘𝑐 ← 𝐺𝑒𝑛 1𝜅

𝑐0 ← 𝐸𝑛𝑐 𝑝𝑘0, 𝑚0

𝑝𝑘1−𝑐 ← 𝑂𝐺𝑒𝑛 1𝜅

𝑐1 ← 𝐸𝑛𝑐 𝑝𝑘1, 𝑚1

𝑚0, 𝑚1 𝑐

𝑚𝑐
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input & outputSee the paper for details
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Round Complexity Independent of 𝐶



Candidate construction [GGHRSW’13]

Nice property: the depth of the obfuscation circuit is 
independent of the circuit to obfuscate

Indistinguishability Obfuscation (iO)

𝑪𝟏 𝑪𝟐≡ 𝒊𝑶 𝑪𝟏 𝒊𝑶 𝑪𝟐∼



Def: 𝑖𝑂, 𝑆𝑖𝑚1, 𝑆𝑖𝑚2 is non-committing iO for Γ if

• 𝑆𝑖𝑚1 generates canonical obf. circuit  𝐶 for Γ

• Given any 𝐶 ∈ Γ, 𝑆𝑖𝑚2 can explain  𝐶 as 𝑖𝑂 𝐶

Non-Committing iO

 𝑪

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒

Γ =

All circuits are functionally equivalent

 𝑪𝑪𝟐 𝑆𝑖𝑚2
 𝐶, 𝐶2 𝒊𝑶 𝑪𝟐; 𝒓𝑪𝟐 𝑟∼



Bad news: 

If NCiO for circuits exists
⇒ poly-time solution to circuit equivalence (co-NP)
⇒ polynomial hierarchy collapses

Good news: 

Circuit equivalence is easy for constant circuits 
(no input wires)

Thm: If NCiO for constant circuits exists 
then ∃ adaptive SFE protocol with short CRS 
whose round complexity is independent of 𝐶

Non-Committing iO (2)



Protocol Idea

𝑥1, 𝑟1

𝑥1
𝑥2

1. Circuit 𝐶1 : hard-wire 𝑥1, 𝑥2 to 𝐶
2. Obfuscate 𝐶2 = 𝑖𝑂 𝐶1; 𝑟1 ⊕ 𝑟2

𝑥2, 𝑟2

𝐶2 𝐶2



Protocol Idea

𝑥1, 𝑟1

𝑥1
𝑥2

1. Circuit 𝐶1 : hard-wire 𝑥1, 𝑥2 to 𝐶
2. Obfuscate 𝐶2 = 𝑖𝑂 𝐶1; 𝑟1 ⊕ 𝑟2
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𝐶2 𝐶2

Simulation idea

1st corruption: learn 𝑥1, 𝑦 and randomly sample 𝑟1
Compute  𝐶 ← 𝑆𝑖𝑚1 obfuscated constant circuit with output 𝑦



Protocol Idea

𝑥1, 𝑟1

𝑥1
𝑥2

1. Circuit 𝐶1 : hard-wire 𝑥1, 𝑥2 to 𝐶
2. Obfuscate 𝐶2 = 𝑖𝑂 𝐶1; 𝑟1 ⊕ 𝑟2

𝑥2, 𝑟2

𝐶2 𝐶2

Simulation idea

1st corruption: learn 𝑥1, 𝑦 and randomly sample 𝑟1
Compute  𝐶 ← 𝑆𝑖𝑚1 obfuscated constant circuit with output 𝑦

2nd corruption: learn 𝑥2, 𝑦 and compute 𝐶1 (using 𝐶, 𝑥1, 𝑥2)
Compute 𝑟 ← 𝑆𝑖𝑚2

 𝐶, 𝐶1 and set 𝑟2 = 𝑟 ⊕ 𝑟1



Constant Round for
One-Sided Poly-Size Domain



Thm: Assume adaptively secure OT exist 

• 𝑓 is deterministic 2-party functionality

• 𝑥1 ∈ 𝐷 ⊂ 0,1 𝑛, 𝐷 = 𝑝𝑜𝑙𝑦 𝑛

• 𝑥2 ∈ 0,1 𝑛

Then 𝑓 can be adaptively realized with short CRS 
in constant number of rounds

Optimistic view: feasibility result

Pessimistic view: to rule out constant-round 
protocols in general, consider super-poly domain 
or randomized functions

Constant-Round Protocol



Summary
1. How to simulate non-interactive NCE in UC

2. NCiO is complete for round complexity ind. of circuit

3. Constant-round protocols for class of functions

Open questions:

• Does NCiO for constant circuits exist?

• Find more functions that have constant-round 
protocols with short CRS


