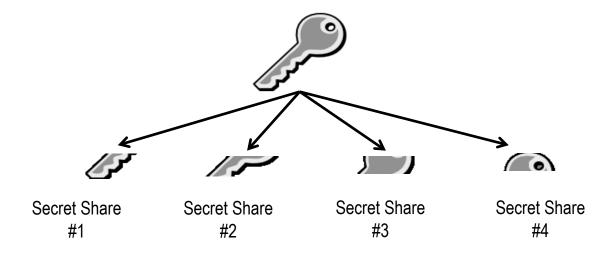
Proactive Secret Sharing with a Dishonest Majority

Shlomi Dolev*, Karim ElDefrawy**, Joshua Lampkins**, Rafail Ostrovsky***, Moti Yung****

> * Ben-Gurion University ** Hughes Research Labs (HRL) *** University of California Los Angeles (UCLA) **** Snapchat and Columbia University

Secret Sharing (1/2)

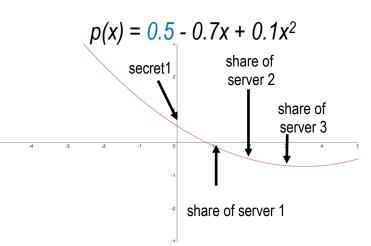
- A *t* out of *n* secret sharing scheme shares a secret among *n* parties.
- Any *t* + 1 parties can combine their shares to reconstruct the secret.
- With only *t* of the *n* shares one does not learn any information about the secret.
- Invented independently by Blakely and Shamir (1979).



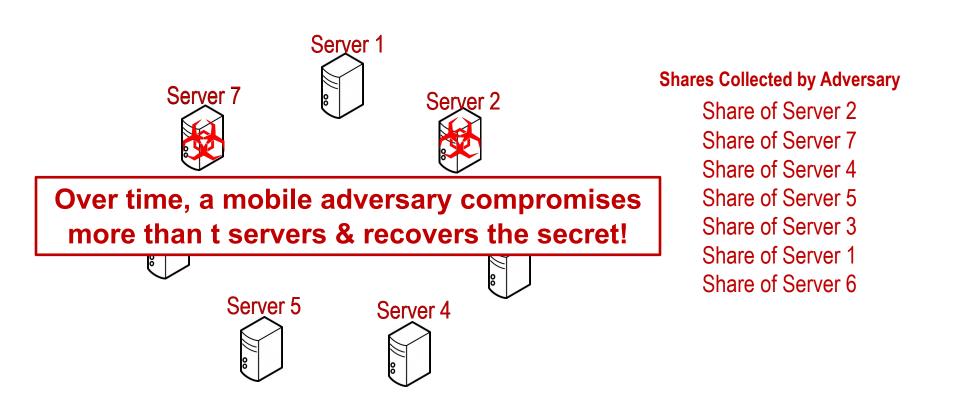
Secret Sharing (2/2)

 Shamir's Technique: store secret in constant term of degree t polynomial to tolerate up to t leaked shares (called t + 1 out of n)

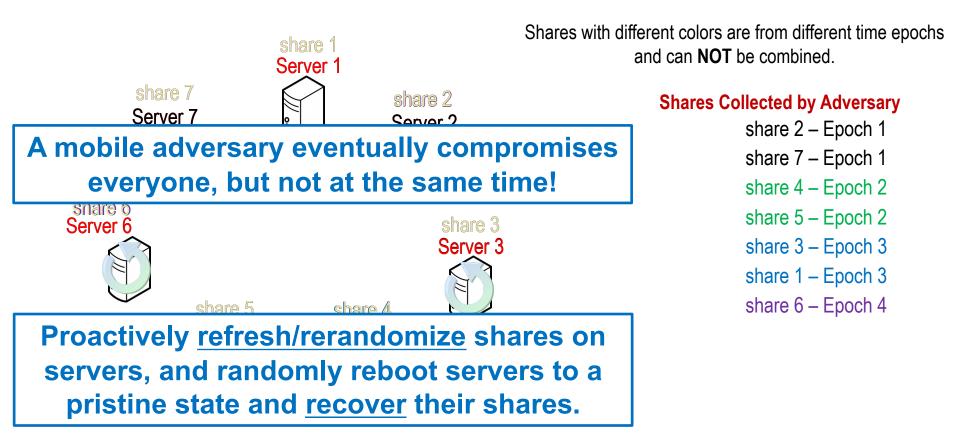
- *i.* **Share:** for secret **s**, pick random coefficients $a_1 \dots a_t$ & set $a_0 = s$ and $p(x) = a_0 + a_1 x + a_2 x^2 + \dots a_t x^t$ distribute shares as p(1), $p(2) \dots f(n)$ to the *n* parties
- *ii.* **Open/Reconstruct:** from p(1), $p(2) \dots p(t+1)$ interpolate p(x) and recover secret as $p(0) = a_0 = s$



Mobile Adversaries



Proactive Security



Relevance of Proactive Security Model

- Proactively secure protocols for various cryptographic primitives were developed since 90s:
 - Proactive secure multi-party computation [OY91, BELO14, BELO15].
 - Proactive encryption/signature schemes [FGMY97a, FGMY97b, Rab98, CGJ+99, FMY01, Bol03, JS05, JO08, ADN06].

 Proactive secret sharing [WWW02, ZSvR05, CKLS02, Sch07, HJKY95, DELOY16].

Mixed Adversaries Model

- Threshold of corruptions is defined by (A^*, P^*) :
 - Set of Passive Corruptions (P*): semi-honest, follows protocols but tries to violate privacy
 - Set of Active Corruptions (A*): fully malicious, can deviate arbitrarily from protocols
- Each active corruption is also a passive corruption ($A^* \subseteq P^*$)
- Multi-threshold:
 - Correctness (T^c): threshold for which correctness is ensured
 - Secrecy (T^s): threshold for which secrecy is ensured
 - **Robustness** (T^r) : threshold for which robustness is ensured

Our Result

Paper	Network Model	Dynamic Groups	Security	Threshold	Communication (amortized)
[WWW02]	Synch.	No	Crypto.	t/n < 1/2	exp(n)
[ZSvR05]	Asynch.	No	Crypto	t/n < 1/3	exp(n)
[CKLS02]	Asynch.	No	Crypto	t/n < 1/3	O(n ⁴)
[Sch07]	Asynch.	Yes	Crypto	t/n < 1/3	O(n ⁴)
[OY91]	Synch.	No	Statistical	t/n < 1/3	O(n ³)
[HJKY95]	Synch.	No	Crypto	t/n < 1/2	O(n ²)
[BELO14]	Synch.	No	Perfect / Statistical	t/n < 1/3-ε / t/n < 1/2-ε	O(1)
[BELO15]	Synch.	Yes	Perfect / Statistical	t/n < 1/3-ε / t/n < 1/2-ε	O(1)
[DELOY16]	Synch.	No	Crypto (homomorphic commitments)	t < n - r (passive only) t < n/2 - r (active) t < n - k - r (mixed adversaries) t = total corruptions k = active corruptions r = number of nodes reset in parallel	O(n ⁴)

[DELOY16] Proactive Secret Sharing (PSS) where t could be > n/2, when k = 0 (i.e., passive corruptions only) t < n - r, r = 1 if nodes will be reset serially.

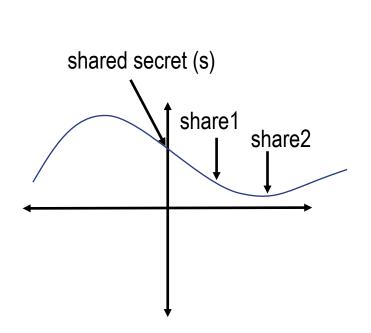
Background: Gradual Secret Sharing

- First introduced in [HML13] for mixed adversaries (a mix of passive and active corruptions)
- Secure against a dishonest majority with identifiable aborts
- Share: A d-gradual secret sharing of a secret s does the following:

– Split s into d random summands, $s = \sum_{i=1}^{d} s_i$

- Share each s_i with a random polynomial of degree *i*
- Reconstruct: to recover s shared with a d-gradual secret sharing:
 - Reconstruct the *d* polynomials in decreasing order (from *d* down to 1)
 - For polynomial *i* if less than *i*+1 parties are honest abort and identify misbehaving parties

Single vs. Gradual Secret Sharing



Linear Sharing [Sha79]

shared summand S2 shared summand S2 shared shared summand S1 share1 for S1 share1 for S1

Gradual Sharing [HML13]

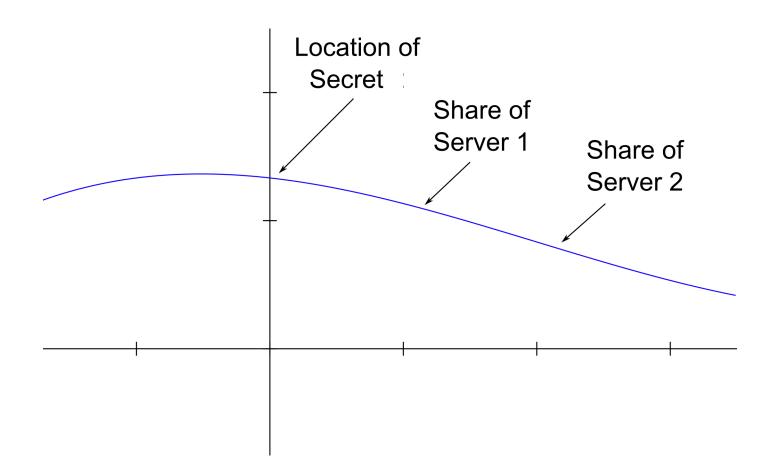
- Secret is stored as a free term in a polynomial of degree t
- Confidentiality lost if t+1 parties compromised, typically t < n/2
- Robust

- Confidentiality is not lost as long as at most d < n parties are compromised
- Non-robust with active adversaries

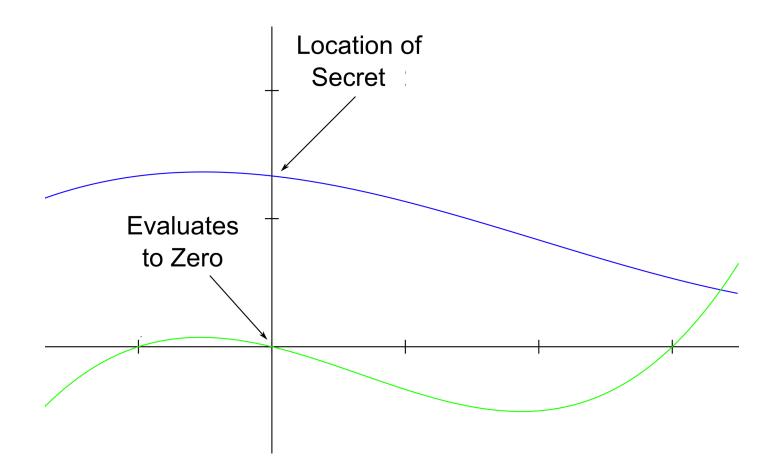
PSS Blueprint for Dishonest Majority

- Use Gradual Secret Sharing with a maximum degree less than d = n r where r is the number of parties that can be rebooted in parallel.
- Proactivizing Gradual Secret Sharing by developing two protocols with same security guarantees against mixed adversaries and dishonest majority:
 - 1. **Refresh:** distributed rerandomization of shares
 - 2. **Recovery:** distributed recovery of shares (for rebooted nodes)

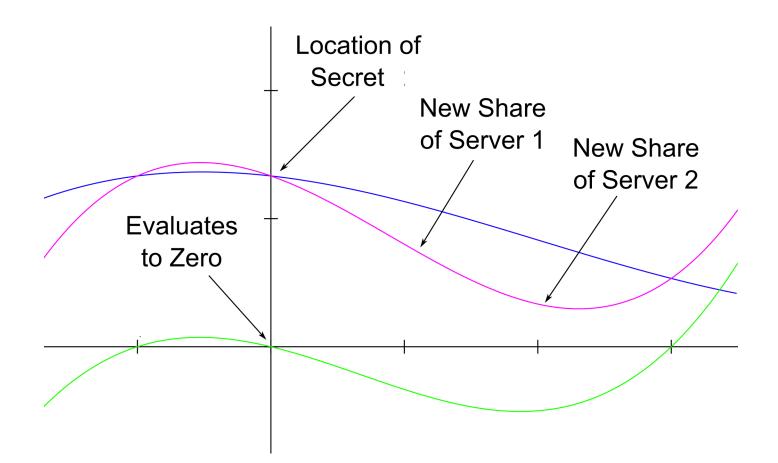
Refreshing Shares of a Summand (1/3)



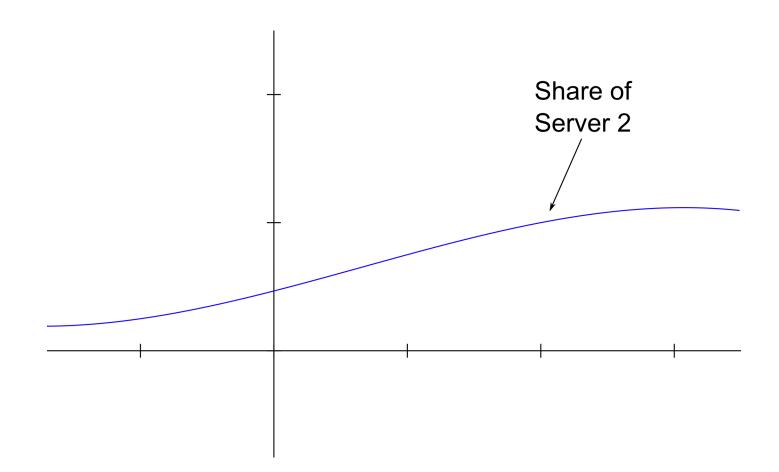
Refreshing Shares of a Summand (2/3)



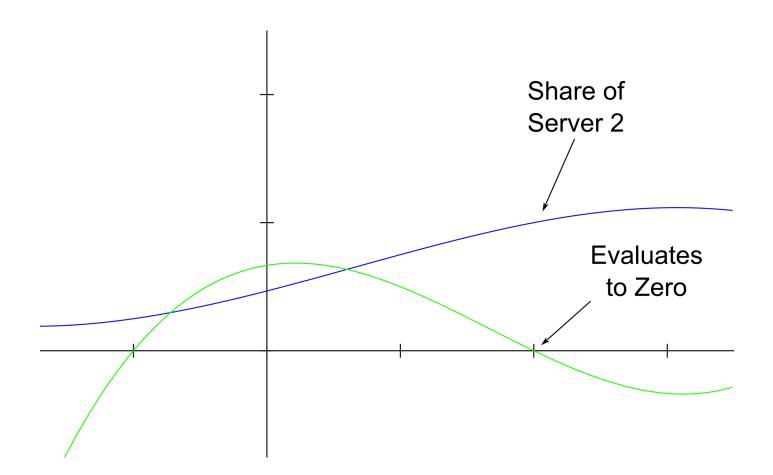
Refreshing Shares of a Summand (3/3)



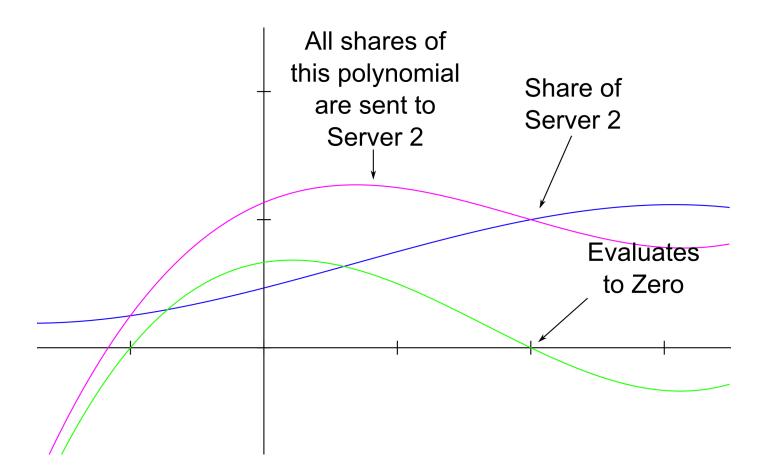
Recovering Shares of a Summand (1/3)



Recovering Shares of a Summand (2/3)



Recovering Shares of a Summand (3/3)



Main Theorem

• For r = 1 (rebooting nodes in series) we get the highest thresholds.

Theorem:

- Given a gradual secret sharing parameter d < n k 1 there exists a computationally secure (T^s, T^r, T^c)-secure PSS scheme, utilizing a computationally secure homomorphic commitment scheme, for mixed adversaries characterized by (A^*, P^*) where $A^* \subseteq P^*$.
- The PSS scheme ensures secrecy if |P*| ≤ d, is robust against |A*| ≤ k if d < n-k-1 and |P*| ≤ d, and is correct with agreement on aborts if |P*| ≤ d ∧ |P*|+|A*| ≤ n-2.

Proof Sketches

- Since this is only a SS, prove correctness and security as properties of the SS scheme
- Can be formalized to provide full simulator showing that view in real world ~ view ideal world
- Secrecy: straightforward because of degree of polynomial
- Robustness: given a polynomial with degree less than n r, have r redundant points so can reconstruct without them
- Correctness (with agreement on aborts): prove by contradiction by breaking correctness of PSS scheme to security of underlying commitment scheme

Future Work

- Efficient Communication: can communication be reduced to O(n) or even O(1)?
- Other Blueprints: Using a single polynomial with degree n r 1 and ZK proofs (constant size) can probably shave a factor n from communication.
- **Dynamic Groups:** extend the new PSS to dynamic groups with dishonest majority.
- (In Progress) Extend to Proactive Secure Multiparty Computation: perform computation with proactive refresh with similar thresholds, i.e., with a dishonest majority. Currently all proactive MPC protocols are for honest majority (t < n/2).

Questions?