
Memory Erasability Amplification

The 10th Conference on Security and Cryptography for Networks (SCN) – August 31, 2016

Jan Camenisch
IBM Research–Zurich

Robert R. Enderlein – scn2016@e7n.ch
work carried out while at IBM Research–Zurich and ETH Zurich

Ueli Maurer
ETH Zurich

2 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Goal: Practical Protocols with Strong Security

Realistic assumptions.
No random oracles. Allow CRS.

Provably secure in arbitrary contexts.
Designed in a composition framework
(UC, GNUC, Abstract Cryptography, ...).

Secure against adaptive adversaries.
Real computers can be compromised at any time.

Efficient enough for practical settings.

3 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

The Need for Erasable Memory
Erasable memory crucial for most

practical adaptively secure protocols.

Not always available in reality:
–Computers designed to preserve data, not erase it.
–File systems don't erase deleted files; keep traces in journal.
–SSD's don't flash blocks containing overwritten data right away.

 Important to model imperfectly erasable memory.
–Attempt by [CEGL08, Lim08], but needed to change framework.

Re-use existing protocols by constructing perfect memory
from imperfect one.

[CEGL08]: Canetti, Eiger, Goldwasser, Lim.
How to Protect Yourself without Perfect Shredding. ICALP 2008.
[Lim08]: Lim. The Paradigm of Partial Erasures. PhD thesis, MIT, 2008.

4 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Our Contributions

We formally model imperfectly erasable memory in the
Abstract Cryptography (AC) framework.

We investigate how to amplify the
erasability of such memories.

We propose better constructions of
All-or-Nothing Transforms (AoNTs).
(Not in today’s slides: see the paper.)

5 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Modeling Erasable Memory in the AC Framework

Data ← μ
Ldat
Log:

Store μ∈Φk

Erase

Retrieve
μ

Memory can be written once.
–If multiple writes: use multiple resources.

6 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Modeling Erasable Memory in the AC Framework

Data = μ
Ldat
Log:

Store μ∈Φk

Erase

Retrieve
μ

7 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Modeling Erasable Memory in the AC Framework

Data = μ
Ldat
Log: e

Store μ∈Φk

Erase

Retrieve
μ

Entire memory is erased.
–For more granularity: use multiple resources.

Erasure event is logged.

8 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Modeling Erasable Memory in the AC Framework

Data = μ
Ldat
Log: e, X

Event X

Environment can influence resource through events.
– Malware, adversary gets physical access, or even environmental conditions.
– Events not triggered by the adversary: otherwise no checks & balances.

Security guarantees of resource depends on those events.

Events are logged.

9 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Modeling Erasable Memory in the AC Framework

Data = μ
Ldat
Log: e, X

Adversarial access: none, total (Read), or partial (Leak).

Total access if predicate ρ on event log is true.
–Typically: “critical” event before/without erasure.

Read

μ

If ρ(Log)
 = true:

Leak, ξ

ξ(Ldat)

If κ(Log, ξ)
 = true:

10 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Modeling Erasable Memory in the AC Framework

Data = μ
Ldat ← ψ(μ)
Log: e, X, ξ

$

Adversary might influence result: deterministic function ξ.

Potential leakage Ldat dependent on random function ψ.

Gets ξ(Ldat)=ξ(ψ(μ)) if predicate κ on event log & ξ is true.
–Typically: “critical” event

after erasure and
ξ is OK.

Adaptive queries.

Read

μ

If ρ(Log)
 = true:

Leak, ξ

ξ(Ldat)

If κ(Log, ξ)
 = true:

11 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Types of Erasable Memory
Typical types of memory are just specializations:

–Perfectly erasable memory.
• ρ is true if memory was attacked before/without erase.
• κ returns false.

–Imperfectly erasable memory:
♦ Memory leaking a constant number of bits.

• ρ idem.
• ψ(μ)=μ.
• κ is true if Log=(e, X) and ξ reads d bits of Ldat (and thus of μ).

♦ Memory leaking a noisy version of the data.
–Non-erasable memory.

Store μ∈Φk Data ← μ
Ldat
Log:

Data = μ
Ldat
Log: e, X

Read μ
If ρ(Log) = true

Data = μ
Ldat ← ψ(μ)
Log: e, X, ξ

Leak, ξ ξ(Ldat)
If κ(Log, ξ) = true

$

12 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Types of Erasable Memory
Typical types of memory are just specializations:

–Perfectly erasable memory.
• ρ is true if memory was attacked before/without erase.
• κ returns false.

–Imperfectly erasable memory:
♦ Memory leaking a constant number of bits.

• ρ idem.
• ψ(μ)=μ.
• κ is true if Log=(e, X) and ξ reads d bits of Ldat (and thus of μ).

♦ Memory leaking a noisy version of the data.
–Non-erasable memory.

Store μ∈Φk Data ← μ
Ldat
Log:

Data = μ
Ldat
Log: e, X

Read μ
If ρ(Log) = true

Data = μ
Ldat ← ψ(μ)
Log: e, X, ξ

Leak, ξ ξ(Ldat)
If κ(Log, ξ) = true

$

13 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Types of Erasable Memory
Typical types of memory are just specializations:

–Perfectly erasable memory.
• ρ is true if memory was attacked before/without erase.
• κ returns false.

–Imperfectly erasable memory:
♦ Memory leaking a constant number of bits.

• ρ idem.
• ψ(μ)=μ.
• κ is true if Log=(e, X) and ξ reads d bits of Ldat (and thus of μ).

♦ Memory leaking a noisy version of the data.
–Non-erasable memory.

Store μ∈Φk Data ← μ
Ldat
Log:

Data = μ
Ldat
Log: e, X

Read μ
If ρ(Log) = true

Data = μ
Ldat ← ψ(μ)
Log: e, X, ξ

Leak, ξ ξ(Ldat)
If κ(Log, ξ) = true

$

14 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Types of Erasable Memory
Typical types of memory are just specializations:

–Perfectly erasable memory.
• ρ is true if memory was attacked before/without erase.
• κ returns false.

–Imperfectly erasable memory:
♦ Memory leaking a constant number of bits.

• ρ idem.
• ψ(μ)=μ.
• κ is true if Log=(e, X) and ξ reads d bits of Ldat (and thus of μ).

♦ Memory leaking a noisy version of the data.
–Non-erasable memory.

Store μ∈Φk Data ← μ
Ldat
Log:

Data = μ
Ldat
Log: e, X

Read μ
If ρ(Log) = true

Data = μ
Ldat ← ψ(μ)
Log: e, X, ξ

Leak, ξ ξ(Ldat)
If κ(Log, ξ) = true

$

15 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Building Protocols using our Memory

Goal: protocols that work with imperfectly erasable memory.

Protocols must not circumvent the memory resource:
–Maintain no internal state between computation phases.
–But can use temporary storage (registers) during phase

(to avoid strong dependency on actual implementation).

MemoryProtocol

16 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Constructing Perfectly Erasable Memory

Memory
leaking
d bits

Protocol
Perfectly
erasable
memory≈

Φk Φn Φk

σ

17 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Constructing Perfectly Erasable Memory

Memory
leaking
d bits

Protocol
Perfectly
erasable
memory≈

Φk Φn Φk

Store μ∈Φk

μ'=aontenc(μ) Store μ'∈Φn

Erase Erase

Retrieve

μ

Retrieve

μ'μ=aontdec(μ')

Protocol

The protocol uses an AoNT [CDH+00].

[CDH+00]: Canetti, Dodis, Halevi, Kushilevitz, Sahai. Exposure-Resilient
Functions and All-or-Nothing Transforms. Eurocrypt 2000.

σ

18 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

All-or-Nothing Transform [CDH+00]

Completeness:
–∀μ∈Φk: μ = aontdec(aontenc(μ)).

Privacy:
–For all sets L of size d, μ0∈Φk, μ1∈Φk:
(μ0, μ1, [aontenc(μ0)]L) ≈ (μ0, μ1, [aontenc(μ1)]L).

aontenc

aontdec

No information

[CDH+00]: Canetti, Dodis, Halevi, Kushilevitz, Sahai. Exposure-Resilient
Functions and All-or-Nothing Transforms. Eurocrypt 2000.

19 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Examples of AoNT
 (Ramp) secret sharing scheme:

–Based on Shamir secret sharing (only for large Φ). [BM84]
–For Φ={0, 1}, construction using linear block code. [CDH+00]

Generator matrix G of minimum distance d.

[BM84]: Blakley, Meadows. Security of Ramp Schemes. Crypto 1984.

G

0I

I
* =

μ

r
y

20 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Summary
Erasable memory crucial for most practical adaptively secure

protocols.

Not always available in reality
→ Important to model imperfect memory.

We provided a formal model of erasable memory in the Abstract
Cryptography (AC) framework.

We Investigated how to amplify the erasability of such memories.

We proposed better All-or-Nothing Transforms (AoNTs).

Contact e-mail: scn2016@e7n.ch

Thank you!

	Memory Erasability Amplification
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

