
Memory Erasability Amplification

The 10th Conference on Security and Cryptography for Networks (SCN) – August 31, 2016

Jan Camenisch
IBM Research–Zurich

Robert R. Enderlein – scn2016@e7n.ch
work carried out while at IBM Research–Zurich and ETH Zurich

Ueli Maurer
ETH Zurich



2 Memory Erasability Amplification, Jan Camenisch, Robert R. Enderlein, Ueli MaurerAugust 31, 2016

Goal: Practical Protocols with Strong Security

Realistic assumptions.
No random oracles. Allow CRS.

Provably secure in arbitrary contexts.
Designed in a composition framework
(UC, GNUC, Abstract Cryptography, ...).

Secure against adaptive adversaries.
Real computers can be compromised at any time.

Efficient enough for practical settings.
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The Need for Erasable Memory
Erasable memory crucial for most

practical adaptively secure protocols.

Not always available in reality:
–Computers designed to preserve data, not erase it.
–File systems don't erase deleted files; keep traces in journal.
–SSD's don't flash blocks containing overwritten data right away.

 Important to model imperfectly erasable memory.
–Attempt by [CEGL08, Lim08], but needed to change framework.

Re-use existing protocols by constructing perfect memory
from imperfect one.

[CEGL08]: Canetti, Eiger, Goldwasser, Lim.
How to Protect Yourself without Perfect Shredding. ICALP 2008.
[Lim08]: Lim. The Paradigm of Partial Erasures. PhD thesis, MIT, 2008.
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Our Contributions

We formally model imperfectly erasable memory in the
Abstract Cryptography (AC) framework.

We investigate how to amplify the
erasability of such memories.

We propose better constructions of
All-or-Nothing Transforms (AoNTs).
(Not in today’s slides: see the paper.)
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Modeling Erasable Memory in the AC Framework

Data ← μ
Ldat
Log:

Store μ∈Φk

Erase

Retrieve
μ

Memory can be written once.
–If multiple writes: use multiple resources.
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Modeling Erasable Memory in the AC Framework

Data = μ
Ldat
Log:

Store μ∈Φk

Erase

Retrieve
μ
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Modeling Erasable Memory in the AC Framework

Data = μ
Ldat
Log: e

Store μ∈Φk

Erase

Retrieve
μ

Entire memory is erased.
–For more granularity: use multiple resources.

Erasure event is logged.
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Modeling Erasable Memory in the AC Framework

Data = μ
Ldat
Log: e, X

Event X

Environment can influence resource through events.
– Malware, adversary gets physical access, or even environmental conditions.
– Events not triggered by the adversary: otherwise no checks & balances.

Security guarantees of resource depends on those events.

Events are logged.
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Modeling Erasable Memory in the AC Framework

Data = μ
Ldat
Log: e, X

Adversarial access: none, total (Read), or partial (Leak).

Total access if predicate ρ on event log is true.
–Typically: “critical” event before/without erasure.

Read

μ

If ρ(Log)
  = true:

Leak, ξ

ξ(Ldat)

If κ(Log, ξ)
  = true:
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Modeling Erasable Memory in the AC Framework

Data = μ
Ldat ← ψ(μ)
Log: e, X, ξ

$

Adversary might influence result: deterministic function ξ.

Potential leakage Ldat dependent on random function ψ.

Gets ξ(Ldat)=ξ(ψ(μ)) if predicate κ on event log & ξ is true.
–Typically: “critical” event

after erasure and
ξ is OK.

Adaptive queries.

Read

μ

If ρ(Log)
  = true:

Leak, ξ

ξ(Ldat)

If κ(Log, ξ)
  = true:
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Types of Erasable Memory
Typical types of memory are just specializations:

–Perfectly erasable memory.
• ρ is true if memory was attacked before/without erase.
• κ returns false.

–Imperfectly erasable memory:
♦ Memory leaking a constant number of bits.

• ρ idem.
• ψ(μ)=μ.
• κ is true if Log=(e, X) and ξ reads d bits of Ldat (and thus of μ).

♦ Memory leaking a noisy version of the data.
–Non-erasable memory.

Store μ∈Φk Data ← μ
Ldat
Log:

Data = μ
Ldat
Log: e, X

Read μ
If ρ(Log) = true

Data = μ
Ldat ← ψ(μ)
Log: e, X, ξ

Leak, ξ ξ(Ldat)
If κ(Log, ξ) = true

$
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Building Protocols using our Memory

Goal: protocols that work with imperfectly erasable memory.

Protocols must not circumvent the memory resource:
–Maintain no internal state between computation phases.
–But can use temporary storage (registers) during phase

(to avoid strong dependency on actual implementation).

MemoryProtocol
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Constructing Perfectly Erasable Memory

Memory
leaking
d bits

Protocol
Perfectly
erasable
memory≈

Φk Φn Φk

σ
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Constructing Perfectly Erasable Memory

Memory
leaking
d bits

Protocol
Perfectly
erasable
memory≈

Φk Φn Φk

Store μ∈Φk

μ'=aontenc(μ) Store μ'∈Φn

Erase Erase

Retrieve

μ

Retrieve

μ'μ=aontdec(μ')

Protocol

The protocol uses an AoNT [CDH+00].

[CDH+00]: Canetti, Dodis, Halevi, Kushilevitz, Sahai. Exposure-Resilient
Functions and All-or-Nothing Transforms. Eurocrypt 2000.

σ
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All-or-Nothing Transform [CDH+00]

Completeness:
–∀μ∈Φk: μ = aontdec(aontenc(μ)).

Privacy:
–For all sets L of size d, μ0∈Φk, μ1∈Φk:
(μ0, μ1, [aontenc(μ0)]L) ≈ (μ0, μ1, [aontenc(μ1)]L).

aontenc

aontdec

No information

[CDH+00]: Canetti, Dodis, Halevi, Kushilevitz, Sahai. Exposure-Resilient
Functions and All-or-Nothing Transforms. Eurocrypt 2000.
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Examples of AoNT
 (Ramp) secret sharing scheme:

–Based on Shamir secret sharing (only for large Φ). [BM84]
–For Φ={0, 1}, construction using linear block code. [CDH+00]

Generator matrix G of minimum distance d.

[BM84]: Blakley, Meadows. Security of Ramp Schemes. Crypto 1984.

G

0I

I
* =

μ

r
y
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Summary
Erasable memory crucial for most practical adaptively secure

protocols.

Not always available in reality
→ Important to model imperfect memory.

We provided a formal model of erasable memory in the Abstract
Cryptography (AC) framework.

We Investigated how to amplify the erasability of such memories.

We proposed better All-or-Nothing Transforms (AoNTs).

Contact e-mail: scn2016@e7n.ch

Thank you!
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