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Motivation: Efficient UC-Secure Protocols

Universal composability (UC) framework guarantees that if a
protocol is proven secure in the UC framework, it remains secure
even if it is run concurrently with arbitrary protocols.

Protocol A

UC-secure

Protocol A
UC-secure

Protocol B
(insecure)

Protocol C

Weak spot: The lack of efficient instantiations.
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Why UC Commitments ?

Because UC commitments are complete.

UC commitments imply UC zero-knowledge protocols and UC
multi-party computations (MPC) [CLOS02].

More efficient (static/adaptively) UC-secure commitment scheme
enables more efficient constructions of (static/adaptively)
UC-secure (MPC) protocols.
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UC Commitments [CF01]

Informally, a commitment scheme is UC-secure if the hiding and
binding properties hold even if it runs concurrently with arbitrary
protocols.

For a technical reason, we make a commitment scheme
extractable, equivocal and con-current non-malleable. Then,
prove that it is universally composable.
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Static and Adaptive UC Security

Static UC-security = UC security against static corruption.

Adaptive UC-security with/out erasure = UC security
against adaptive corruption with/out erasure.

Static Corruption: An adversary should decide to corrupt
parties only before a protocol starts.

Adaptive Corruption: An adversary may corrupt parties at
any timing.

Secure Erasure: Honest parties can securely erase their
unnecessary inner states.
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Previous Work

[CF01]
Seminal paper. Non-interactive, reusable, adaptively UC-secure

without erasure (= fully-equipped).

[CLOS02]
From general assumption, fully-equipped but Inefficient.

[DN02, DG03, NFT12, Fuj14]
Efficient adaptively UC-secure without erasure (based on Nd

modulus for d ≥ 2). [NFT12]: one-time. [Fuj14]: fully-equipped.

[Lin11, BCPV13], [FLM11]
Efficient adaptively UC-secure with erasure (based on prime order

groups). [FLM11]: non-interactive (based on bilinear groups).

[GIKW14, DDGN14, CDD+15, FJNT16, CDD+16]
Fast, statistic UC-secure.

[DSW08]
Global UC-secure.

[HM04, CJS14]
Random oracle model.
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Efficient Adaptively UC-secure with Erasure

So far, [BCPV13] provides the most efficient adaptively UC-secure
commitment scheme.

[Lin11]: Static and adaptively UC-secure interactive
commitment schemes based on an arbitrary cyclic group on
which the DDH assumption holds.

[BCPV13]: Improvement of [Lin11]. Reduce round,
communication, and computational complexities. Fix a bug of
Lindell’s adaptively UC-secure commitment scheme.

[BCPV13]: Blazy, Chevalier, Pointcheval, and Vergnaud (ACNS2013).
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Our Result

Further improve efficiency of [BCPV13] in both static and adaptive
cases under the same assumption.

Improvement: CRS size, communication complexity, and
computational complexity.

Round complexity: same as [BCPV13].

As the previous works, work on an arbitrary cyclic group on
which the DDH assumption holds true.
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Comparison

Table: Comparison among the UC commitments based on the DDH
assumption (along with the collision resistant hash functions).

Schemes CRS Communication Computational Rounds Security
Complexity Complexity Com/Decom

Lin11 [Lin11, § 3] 7|G| 10|G| + 4κ 27T exp(G) 1/4 Static
Lin11 [Lin11, § 4] 8|G| 12|G| + 6κ 36T exp(G) 5/1 Adaptive
BCPV13 [BCPV13, § 5.1] 7|G| 9|G| + 3κ 22T exp(G) 1/3 Static
BCPV13 [BCPV13, § 5.3] 7|G| 10|G| + 4κ 26T exp(G) 3/1 Adaptive

Ours (Static) 5|G| 7|G| + 3κ 18T exp(G) 1/3 Static
Ours (Adaptive) 5|G| 7|G| + 3κ 18T exp(G) 3/1 Adaptive

Note: All adaptively UC-secure commitments above assume secure erasure.
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UC Commitments are required

Extractable
A simulator can extract the value that a corrupted party commits
to.

Equivocal
A simulator can produce commitments that can be opened to any
value.

When executing extraction and equivocation, the simulator is not
allowed to rewind the adversary.

Concurrently Non-Malleable
An adversary must not be able to create commitments that are
related to commitments generated by honest parties.
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High-Level Idea (Static) by Lindell

The commit phase:

Use PKE. Send CT = Epk(x ;w) as a commitment (for
extractability).

The open phase:

Open x and prove that CT is a proper ciphertext of x in a
zero-knowledge manner (for equvocality).

For concurrent Non-Malleability:

Trivial solusion: Use IND-CCA secure (= static UC secure)
PKE and UC zero-knowledge.
Problem: UC zero-knowledge proofs are constructed from UC
commitments.
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Lindell’s Static UC-Secure Commitments

Trivial solusion : IND-CCA PKE (for commitment) + UC
zero-knowledge proofs (of knowledge) (for opening).

Problem: UC zero-knowledge proofs are constructed from UC
commitments.

Lindell’s Observation: IND-CCA PKE + straight-line
simulatable zero-knowledge proof on language (*).

(*): 4-round implementation using dual mode encryption +
Sigma protocol (by Lindell).
(*): 3-round implementation using trapdoor commitment +
Sigma protocol (by BCPV).

= [Dam00]: Efficient concurrent zero-knowledge in auxiliary
string model.
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Our static UC-Secure Commitment

UC zero knowledge can be weaker. Then, how about IND-CCA
PKE ?

Can replace IND-CCA PKE with IND-PCA PKE (?).

?: The Short Cramer-Shoup encryption [ABP15].
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Our Observation

IND-CCA PKE is overkill in both static and adaptive cases.

Can replace IND-CCA PKE with IND-PCA PKE, where
IND-PCA means semantical security against plaintext
checkable attacks [ABP15].

In the adaptive case, two trapdoor commitments
(w.r.t. two independent public-keys) can be reduced to a
single trapdoor commitment.
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Our static UC-Secure Commitment

Alice (Committer) Bob (Receiver)
The Commit Phase

Commit to x by sending
CT = Epca

pkenc(x ;w)
CT−−−−−−−−−−−−−→

(cf. BCPV13: IND-CCA)

The Open Phase
Open to x as follows:
ψ = Comtc

pktc(α; rtc)
x , ψ−−−−−−−−−−−−−→

β ← {0, 1}λch .
Compute γ

β←−−−−−−−−−−−−−
using w .

Reveal α with rtc.
α,rtc,γ−−−−−−−−−−−−−→ Accept if (α, β, γ)

is valid on (x ,CT).

The open phase: a proof that “CT is a proper ciphetext of x .”
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Proof Outline

Environment Z’s view: (CT, x , ρ,CT′, x ′, ρ′, x̃).

Table: The man-in-the-midle attack in the hybrid games

Games Left Interaction Right Interaction Output to Z

Alice
(CT,x,ρ)
−→ Eve (corrupted) Eve (corrupted)

(CT′,x′,ρ′)
−→ Bob

x̃−→ Z (Env.)

Commit phase: CT = E(x ; w) Commit phase: CT′

G0 Open phase: x and real proof ρ Open phase: x′ and proof ρ′ x̃ = x′

(Real) on the (true) statement T on the statement T ′

Commit phase: CT = E(x ; w) Commit phase: CT′

G1 Open phase: x and real proof ρ Open phase: x′ and proof ρ′ x̃ = Dsk (CT′)
on the (true) statement T on the statement T ′

Commit phase: CT = E(x ; w) Commit phase: CT′

G2 Open phase: x and simulated proof ρ Open phase: x′ and proof ρ′ x̃ = Dsk (CT′)
on the (true) statement T on the statement T ′

Commit phase: CT = E(0; w) Commit phase: CT′

G3 Open phase: x and simulated proof ρ Open phase: x′ and proof ρ′ x̃ = Dsk (CT′)
(Ideal) on the (false) statement T on the statement T ′

Statement T : CT is a proper ciphertext of x , i.e., CT = E(x).
Statement T ′: CT′ is a proper ciphertext of x ′, i.e., CT′ = E(x ′).
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c
≈ G1: By soundness property of ordinary zero-knowledge protocols and

correctness of PKE.
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G1 ≡ G2: By perfect straight-line zero-knowledge simulator of [Dam00].
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G3 Open phase: x and simulated proof ρ Open phase: x′ and proof ρ′ x̃ = Dsk (CT′)
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G2
c
≈ G3: By IND-PCA secure PKE. Construct A that breaks IND-PCA PKE

using Z and corrupted Eve.
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Proof between G2 and G3

Tricky part: A is only given the plaintext-checkable (PCA) oracle,
not the decryption oracle.

The decryption oracle seems to be needed, because the simulator needs the

decryption of ciphertexts from Eve. However, it is not true.

Case1 (Eve always opens commitments correctly). Then A
can perfectly simulate Z’s views in G2 and G3, according as
given CT = E(x) and E(0) without knowing sk . Then, “the
advantage of A” = “the advantage of Z”.

Case 2 (Eve opens commitment wrongly). Then A must
play in G3, because in G2, Eve cannot fool the receiver. A
can check if she fooled the receiver or not, using the PCA
oracle. Then, A can halt and say “I am playing in G3”.
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Static to Adaptive

Lindell’s Idea: Switch the order of the messages (For
soundness, commits to CT at the beginning).

(BCPV’s bug fix: Commit to (x ,CT), not only CT to fix the
statement for proof beforehand.)

Our observation: CT and α (the first message of the Sigma
protocol) can be committed to in the same commitment.

Can reduce communication and computational complexities.
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Our adaptively UC-Secure Commitment

Alice (Committer) Bob (Receiver)
The Commit Phase

CT = Epca
pkenc(x ;w)

ψ = Comtc
pktc ((x ,CT, α); rtc)

ψ−−−−−−−−−−−−−→
β ← {0, 1}λch .

Compute γ
β←−−−−−−−−−−−−−

using w .
Erase w .

CT−−−−−−−−−−−−−→

The Open Phase

Reveal (α, γ) with rtc.
x , α,rtc,γ−−−−−−−−−−−−−→ Accept if (α, β, γ)

is valid on (x ,CT).
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Conclusion

We further improve efficiency of [BCPV13] in both static and
adaptive-with-erasure cases.

As with [Lin11, BCPV13], our proposals work on an arbitrary
cyclic group on which the DDH assumption holds true.

Our adaptive one is the most efficient adaptively UC-secure
(with erasure) commitment scheme.
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Thank you!

(Nearly) full version available at ePrint Archive 2016/656.
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